[ 收藏 ] [ 简体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

聚多糖納米晶--化學與應用(精)/先進功能材料叢書
該商品所屬分類:工業技術 -> 其它
【市場價】
2504-3628
【優惠價】
1565-2268
【介質】 book
【ISBN】9787122229847
【折扣說明】一次購物滿999元台幣免運費+贈品
一次購物滿2000元台幣95折+免運費+贈品
一次購物滿3000元台幣92折+免運費+贈品
一次購物滿4000元台幣88折+免運費+贈品
【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
版本正版全新電子版PDF檔
您已选择: 正版全新
溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
*. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
*. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
*. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
內容介紹



  • 出版社:化學工業
  • ISBN:9787122229847
  • 作者:黃進//彼得·張榮貴//林寧//阿蘭·迪弗雷納
  • 頁數:307
  • 出版日期:2015-03-01
  • 印刷日期:2015-03-01
  • 包裝:精裝
  • 開本:16開
  • 版次:1
  • 印次:1
  • 字數:656千字
  • 聚多糖納米晶是一類從生物質資源提取的高結晶度的“綠色”納米材料,具有來源豐富、生物可降解等許多優點,其基礎研究與應用研發受到學術界和眾多工業領域的廣泛關注。這類來自生物質資源的納米粒子不僅可用於改性橡膠、聚酯等聚合物,制備出高性能納米復合材料;還能夠用於發展功能材料,如新型藥物載體、力學適應性納米材料或薄膜、光學材料等。
    黃進、彼得·張榮貴、林寧、阿蘭·迪弗雷納編著的這本《聚多糖納米晶--化學與應用》彙集了近二十多年聚多糖納米晶各個研究方向的成果,涵蓋了制備技術、結構、性質、表面修飾方法學、復合和功能材料設計與構建等方面的重要理論與*新進展。本書有助於豐富和加深理解聚多糖納米晶化學及材料這一高速發展的研究方向的知識和內涵,可用作高等學校、科研院所及企業單位從事生物質化學與化工、高分子科學、材料科學、納米科學與技術等專業的基礎研究和技術開發人員的參考書。
  • 黃進、彼得·張榮貴、林寧、阿蘭·迪弗雷納編 著的《聚多糖納米晶--化學與應用》采用簡明的語 言、豐富的數據圖表,闡明了來自天然生物質資源的 聚多糖納米晶的提取、結構、性質、化學修飾、材料 制備等方面的理論知識和實踐經驗,總結了聚多糖納 米晶改性材料功能化、高性能化的研究思路和技術方 案。不僅包含作者在過去十年中以保護環境和降低石 油消耗為目標,圍繞可再生、可生物降解的聚多糖納 米晶發展成為高性能材料及功能材料的研究工作的凝 練,同時涵蓋了國內外同行的優秀研究成果。 本書主要包括纖維素納米晶、甲殼素納米晶及澱 粉納米晶的制備、化學和物理改性、納米復合材料和 功能材料構建的相關理論和技術等內容,並且對聚多 糖納米晶的理論研究體繫建立、應用拓展及發展方向 等進行了展望。 本書可供生物質化學與化工、高分子科學、環境 科學、材料科學、農業化學、納米科學與技術等相關 專業的研究生學習使用,也可作為相關科研工作和工 程技術人員的參考書。
  • List of Contributors
    Foreword
    Preface
    1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi Science
    Jin Huang, Peter R. Chang, and Alain Dufresne
    1.1 Introduction to Polysaccharide Nanocrystals
    1.2 Current Application of Polysaccharide Nanocrystals in Material Science
    1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
    List of Abbreviations
    eferences
    2 Structure and Properties of Polysaccharide Nanocrystals
    Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang
    2.1 Introduction
    2.2 Cellulose Nanocrystals
    2.2.1 Preparation of Cellulose Nanocrystals
    2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
    2.2.1.2 Eects of Acid Type
    2.2.1.3 Eects of Pretreatment
    2.2.2 Structure and Properties of Cellulose Nanocrystals
    2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
    2.2.2.2 Physical Properties of Cellulose Nanocrystals
    2.3 Chitin Nanocrystals
    2.3.1 Preparation of Chitin Nanocrystals
    2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
    2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
    2.3.2 Structure and Properties of Chitin Nanocrystals
    2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
    2.3.2.2 Properties of Chitin Nanocrystal Suspensions
    2.4 Starch Nanocrystals
    2.4.1 Preparation of Starch Nanocrystals
    2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
    2.4.1.2 Eect of Ultrasonic Treatment
    2.4.1.3 Eect of Pretreatment
    2.4.2 Structure and Properties of Starch Nanocrystals
    2.4.2.1 Structure of Starch Nanocrystals
    2.4.2.2 Properties of Starch Nanocrystal Suspensions
    2.5 Conclusion and Prospects
    List of Abbreviations
    References
    3 Surface Modication of Polysaccharide Nanocrystals
    Ning Lin and Alain Dufresne
    3.1 Introduction
    3.2 Surface Chemistry of Polysaccharide Nanocrystals
    3.2.1 Surface Hydroxyl Groups
    3.2.2 Surface Groups Originating from Various Extraction Methods
    3.3 Approaches and Strategies for Surface Modication
    3.3.1 Purpose and Challenge of Surface Modication
    3.3.2 Comparison of Dierent Approaches and Strategies of Surface Modication
    3.4 Adsorption of Surfactant
    3.4.1 Anionic Surfactant
    3.4.2 Cationic Surfactant
    3.4.3 Nonionic Surfactant
    3.5 Hydrophobic Groups Resulting from Chemical Derivatization
    3.5.1 Acetyl and Ester Groups with Acetylation and Esterication
    3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
    3.5.3 Derivatization with Isocyanate Carboamination
    3.5.4 Silyl Groups Resulting from Silylation
    3.5.5 Cationic Groups Resulting from Cationization
    3.6 Polymeric Chains from Physical Absorption or Chemical Grafting
    3.6.1 Hydrophilic Polymer
    3.6.2 Polyester
    3.6.3 Polyolen
    3.6.4 Block Copolymer
    3.6.5 Polyurethane andWaterborne Polyurethane
    3.6.6 Other Hydrophobic Polymer
    3.7 Advanced Functional Groups and Modication
    3.7.1 Fluorescent and Dye Molecules
    3.7.2 Amino Acid and DNA
    3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
    3.7.4 Photobactericidal Porphyrin Molecule
    3.7.5 Imidazolium Molecule
    3.7.6 Cyclodextrin Molecule and Pluronic Polymer
    3.8 Concluding Remarks
    List of Abbreviations
    References
    4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites
    Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang
    4.1 Introduction
    4.2 Casting/Evaporation Processing
    4.2.1 Solution Casting/Evaporation Processing
    4.2.2 Solution Casting in Aqueous Medium
    4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous Medium
    4.2.2.2 Blending with Hydrophilic Polymers
    4.2.2.3 Blending with Hydrophobic Polymers
    4.2.3 Solution Casting in Organic Medium
    4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium
    4.2.3.2 Blending with Polymers in Organic Solvent
    4.3 hermoprocessing Methods
    4.3.1 hermoplastic Materials Modied with Polysaccharide Nanocrystals
    4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on Nanocomposite Thermoprocessing
    4.4 Preparation of Nanobers by Electrospinning Technology
    4.4.1 Electrospinning Technology
    4.4.1.1 Concepts
    4.4.1.2 Formation Process of Nanobers
    4.4.1.3 Basic Electrospinning Parameters and Devices
    4.4.1.4 Newly Emerging Electrospinning Techniques
    4.4.2 Nanocomposite Nanobers Filled with Polysaccharide Nanocrystals
    4.4.2.1 Electrospun Nanobers in Aqueous Medium
    4.4.2.2 Electrospun Nanobers in Non-aqueous Medium
    4.5 Sol–Gel Method
    4.5.1 Concepts of Sol–Gel Process
    4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites Prepared by Sol–GelMethod
    4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
    4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal Template
    4.5.3.2 Chiral Porous Materials
    4.5.3.3 Chiral Porous Carbon Materials
    4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
    4.6 Self-Assembly Method
    4.6.1 Overview of Self-Assembly Method
    4.6.2 Self-Assembly Method Toward Polysaccharide Nanocrystal-Modied Materials
    4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous Medium
    4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic Medium
    4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
    4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL Method
    4.7 Other Methods and Prospects
    List of Abbreviations
    References
    5 Polysaccharide Nanocrystal-Reinforced Nanocomposites
    Hanieh Kargarzadeh and Ishak Ahmad
    5.1 Introduction
    5.2 Rubber-Based Nanocomposites
    5.3 Polyolen-Based Nanocomposites
    5.4 Polyurethane andWaterborne Polyurethane-Based Nanocomposites
    5.5 Polyester-Based Nanocomposites
    5.6 Starch-Based Nanocomposites
    5.7 Protein-Based Nanocomposites
    5.8 Concluding Remarks
    List of Abbreviations
    References
    6 Polysaccharide Nanocrystals-Based Materials for Advanced Applications
    Ning Lin, Jin Huang, and Alain Dufresne
    6.1 Introduction
    6.2 Surface Characteristics Induced Functional Nanomaterials
    6.2.1 Active Groups
    6.2.1.1 Importing Functional Groups or Molecules
    6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
    6.2.2 Surface Charges and Hydrophilicity
    6.2.2.1 Emulsion Nanostabilizer
    6.2.2.2 High-Eciency Adsorption
    6.2.2.3 Permselective Membrane
    6.2.3 Nanoscale and High Surface Area
    6.2.3.1 Surface Cell Cultivation
    6.2.3.2 Water Decontamination
    6.3 Nano-Reinforcing Eects in Functional Nanomaterials
    6.3.1 Soft Matter
    6.3.1.1 Hydrogel
    6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanoscaffold
    6.3.2 Special Mechanical Materials
    6.3.3 Self-Healable and Shape-Memory Materials
    6.3.4 Polymeric Electrolytes and Battery
    6.3.5 Semi-conducting Material
    6.4 Optical Materials Derived from Liquid Crystalline Property
    6.5 Special Films and Systems Ascribed to Barrier Property
    6.5.1 Drug Delivery – Barrier for Drug Molecules
    6.5.2 Barrier Nanocomposites – Barrier forWater and Oxygen
    6.6 Other Functional Applications
    6.7 Concluding Remarks
    List of Abbreviations
    References
    7 Characterization of Polysaccharide Nanocrystal-Based Materials
    Alain Dufresne and Ning Lin
    7.1 Introduction
    7.2 Mechanical Properties of Polysaccharide Nanocrystals
    7.2.1 Intrinsic Mechanical Properties of Polysaccharide Nanocrystals
    7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
    7.3 Dispersion of Polysaccharide Nanocrystals
    7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
    7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals
    7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based Materials
    7.4.1 Inuence of the Morphology and Dimensions of the Nanocrystals
    7.4.2 Inuence of the Processing Method
    7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions
    7.6 hermal Properties of Polysaccharide Nanocrystal-Based Materials
    7.6.1 hermal Properties of Polysaccharide Nanocrystals
    7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based Nanocomposites
    7.6.3 Melting/Crystallization Temperature of Polysaccharide Nanocrystal-Based Nanocomposites
    7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based Nanocomposites
    7.7 Barrier Properties of Polysaccharide Nanocrystal-Based Materials
    7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
    7.7.2 Swelling and Sorption Properties of Polysaccharide Nanocrystal-Based Nanocomposites
    7.7.3 Water Vapor Transfer and Permeability of Polysaccharide Nanocrystal-Based Nanocomposites
    7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based Nanocomposites
    7.8 Concluding Remarks
    List of Abbreviations
    References
    Index
 
網友評論  我們期待著您對此商品發表評論
 
相關商品
在線留言 商品價格為新臺幣
關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
返回頂部